skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "King, Scott A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Artificial neural networks are increasingly used for geophysical modeling to extract complex nonlinear patterns from geospatial data. However, it is difficult to understand how networks make predictions, limiting trust in the model, debugging capacity, and physical insights. EXplainable Artificial Intelligence (XAI) techniques expose how models make predictions, but XAI results may be influenced by correlated features. Geospatial data typically exhibit substantial autocorrelation. With correlated input features, learning methods can produce many networks that achieve very similar performance (e.g., arising from different initializations). Since the networks capture different relationships, their attributions can vary. Correlated features may also cause inaccurate attributions because XAI methods typically evaluate isolated features, whereas networks learn multifeature patterns. Few studies have quantitatively analyzed the influence of correlated features on XAI attributions. We use a benchmark framework of synthetic data with increasingly strong correlation, for which the ground truth attribution is known. For each dataset, we train multiple networks and compare XAI-derived attributions to the ground truth. We show that correlation may dramatically increase the variance of the derived attributions, and investigate the cause of the high variance: is it because different trained networks learn highly different functions or because XAI methods become less faithful in the presence of correlation? Finally, we show XAI applied to superpixels, instead of single grid cells, substantially decreases attribution variance. Our study is the first to quantify the effects of strong correlation on XAI, to investigate the reasons that underlie these effects, and to offer a promising way to address them. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Complex machine learning architectures and high-dimensional gridded input data are increasingly used to develop high-performance geoscience models, but model complexity obfuscates their decision-making strategies. Understanding the learned patterns is useful for model improvement or scientific investigation, motivating research in eXplainable artificial intelligence (XAI) methods. XAI methods often struggle to produce meaningful explanations of correlated features. Gridded geospatial data tends to have extensive autocorrelation so it is difficult to obtain meaningful explanations of geoscience models. A recommendation is to group correlated features and explain those groups. This is becoming common when using XAI to explain tabular data. Here, we demonstrate that XAI algorithms are highly sensitive to the choice of how we group raster elements. We demonstrate that reliance on a single partition scheme yields misleading explanations. We propose comparing explanations from multiple grouping schemes to extract more accurate insights from XAI. We argue that each grouping scheme probes the model in a different way so that each asks a different question of the model. By analyzing where the explanations agree and disagree, we can learn information about the scale of the learned features. FogNet, a complex three-dimensional convolutional neural network for coastal fog prediction, is used as a case study for investigating the influence of feature grouping schemes on XAI. Our results demonstrate that careful consideration of how each grouping scheme probes the model is key to extracting insights and avoiding misleading interpretations. 
    more » « less